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Abstract Real-space renormalization group maps, e.g., the majority rule transformation,
map Ising-type models to Ising-type models on a coarser lattice. We show that each coef-
ficient in the renormalized Hamiltonian in the lattice-gas variables depends on only a finite
number of values of the renormalized Hamiltonian. We introduce a method which computes
the values of the renormalized Hamiltonian with high accuracy and so computes the coeffi-
cients in the lattice-gas variables with high accuracy. For the critical nearest neighbor Ising
model on the square lattice with the majority rule transformation, we compute over 1,000
different coefficients in the lattice-gas variable representation of the renormalized Hamil-
tonian and study the decay of these coefficients. We find that they decay exponentially in
some sense but with a slow decay rate. We also show that the coefficients in the spin vari-
ables are sensitive to the truncation method used to compute them.

Keywords Ising model - Renormalization group - Majority rule - Lattice gas variables

1 Introduction

Real-space renormalization group transformations were introduced to study critical behav-
ior in Ising-type models. There has been extensive numerical study of these transformations,
and there is a rich picture of how they are believed to behave. However, there are essentially
no mathematical results on these transformations. The usual definition of these transfor-
mations is only formal since it involves an infinite-volume limit which must be proved to
exist. The mathematical problem is to show that these renormalization group maps are rig-
orously defined in a neighborhood of the critical point, and to use them to study the system
in a neighborhood of the critical point. This is a difficult problem and the amount of rigor-
ous progress that has been made is embarrassing. Starting with the critical nearest neighbor
Hamiltonian, the first step of the renormalization group transformation has been proved to be
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defined for a few specific lattices and transformations [7, 8]. The existence of the transforma-
tion well inside the high-temperature phase has been proved by rigorous expansion methods
[2, 5, 6]. It is possible to construct examples of transformations for which the renormalized
Hamiltonian can be proved to be non-Gibbsian, including examples which start from the
critical nearest neighbor Ising model [16, 17].

Even if we start with a finite-range Hamiltonian, after just one step of the renormalization
group transformation the renormalized Hamiltonian will be infinite range and have infinitely
many different terms. The conventional wisdom is that they should decay both as the number
of sites involved grows and as the distance between these sites grows, so that the renormal-
ized Hamiltonian may be well approximated by a finite number of terms. In some sense,
this property is the raison d’étre of the renormalization group. It should allow one to study
critical phenomena, which are inherently multiscale and so impossible to approximate well
by a finite sets of terms, by studying a map of Hamiltonians which can be well approximated
by a finite number of terms.

Swendsen showed that one can compute the linearization of the renormalization group
transformation about the fixed point from correlation functions that involve the original
spins and the block spins [14]. His method allows one to avoid computing any renormalized
Hamiltonians. From the point of view of using the renormalization group to calculate the
critical exponents, this was a tremendous advance and was used in a large number of subse-
quent Monte Carlo studies of the renormalization group. From the point of view of trying to
learn more about the renormalized Hamiltonians and the fixed point of the transformation,
it had the unfortunate side effect that many of these Monte Carlo studies did not compute
any renormalized Hamiltonians. In recent years there have been more studies that compute
the renormalized Hamiltonian. In particular the Brandt-Ron representation introduced in [1]
and studied further in [9-12] is similar to the method we use in this paper.

The goals of this paper are to give a highly accurate method for computing the renor-
malized Hamiltonian which works in the lattice-gas representation and to use it to test the
conventional wisdom that the renormalization group transformation is well approximated by
a finite number of terms. Our numerical calculations are done for the critical nearest neigh-
bor Ising model on the square lattice, and we only consider the renormalized Hamiltonian
obtained by a single application of the majority rule transformation using 2 by 2 blocks.
However, our approach is quite general and can be applied to other dimensions, lattices and
choices of the real-space renormalization group transformation.

One of the key tenets of the renormalization group is that if we fix a block-spin configura-
tion and study the original system subject to the constraint imposed by the block spins, then
this constrained system is in a high-temperature phase even if the unconstrained system is at
its critical point. As an extreme case consider the block-spin configuration of all 4+1’°s with
the majority rule transformation. The effect of this constraint on the original Ising system
is similar to imposing a positive magnetic field, and the constrained system should have a
relatively short correlation length. Our computational method for the renormalization group
transformation takes advantage of this property.

In the next section we review the definition of real-space renormalization group trans-
formations. In section three we explain our method for computing the renormalized Hamil-
tonian in the lattice-gas representation. Some of the details are postponed to section five. We
use this method to study the decay of the terms in the renormalized Hamiltonian. In sec-
tion four we consider how to compute the renormalized Hamiltonian in the more standard
spin variables. There are multiple ways to do this, and we will see that the computed value
of an individual coupling coefficient in the renormalized Hamiltonian varies considerable
with the method used. Section five provides further detail for our method for computing the
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renormalized Hamiltonian. We consider the various sources of error in our computations in
section six, and offer some conclusions in section seven.

The significant dependence of coefficients in the renormalized Hamiltonian on the trun-
cation method used has been seen before. In particular, Ron and Swendsen observed a
change of several percent in the nearest neighbor coupling when the number of couplings
kept was changed from six to twelve [9]. In [10] they wrote “Even though the individual
multispin interactions usually have smaller coupling constants than two-spin interactions,
the fact that they are very numerous can lead to multispin interactions dominating the effects
of two-spin interactions.” Truncating the space of Hamiltonians implies that the lineariza-
tion of the renormalization group map about the fixed point is also truncated. An early,
interesting paper on the effect of this truncation is [13].

2 Real-Space Renormalization Group Transformations

In this section we quickly review the definition of real-space renormalization group trans-
formations. We refer the reader to [16] for more detail.

Consider an Ising-type model in which the spins take on only the values 1. The lattice
is divided into blocks and each block is assigned a new spin variable called a block spin.
The example of the square lattice with 2 by 2 blocks is shown in Fig. 1. We consider trans-
formations in which the block spins also take on only the values 1. The transformation is
specified by a kernel T (o, o). Here o denotes the original spins and ¢ the block spins. The
kernel is required to satisfy

Y TG.o)=1 )

for all original spin configurations o. The renormalized Hamiltonian H () is formally de-
fined by

1O =N"TF, 0)e 1@ @)

(Note that the inverse temperature 8 has been absorbed into the Hamiltonians in the above
equation.) This is only a formal definition since we must first restrict to a finite volume in
order to make sense of this equation. Proving that the finite-volume definition of H has an
infinite-volume limit is essentially an open problem. The condition (1) implies that

-H@GE) _ —H(o)
2et=de

so that the free energy of the original model can be recovered from the renormalized Hamil-
tonian. This property allows one to study the critical behavior of the system by studying
iterations of the renormalization group map. In particular, the critical exponents may be
related to the eigenvalues of the linearization of the map about its fixed point.

One widely studied family of kernels is the family of majority rule transformations. If
there are an odd number of spins in every block, then 7T(¢,0) = 1 if the majority of the
spins in each block agree with the block spin and 7'(¢, o) = 0 otherwise. If there are an
even number of spins in every block, then we let 7' (¢, o) be the product over the blocks B
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where o5 denotes the block spin for block B.

The general approach presented in this paper applies to all these renormalization group
maps. The numerical calculations that we will present are for the critical nearest neighbor
Ising model on the square lattice with the majority rule renormalization group map with two
by two blocks.

3 Renormalized Hamiltonian in the Lattice-Gas Variables

Real-space renormalization group calculations are usually done using the spin variables
o; = £1. Our method is based on what are sometimes called the lattice-gas variables n; =
(1 — 0;)/2 which take on the values 0, 1. Note that we have made the convention that a spin
value of 4-1 corresponds to a lattice gas value of 0. Throughout this paper we will use o ’s for
spin variables taking on the values &1, and n’s for lattice-gas variables taking on the values
0, 1. We indicate renormalized spins or variables with a bar over them, e.g., 6;, ;. We use o
to denote the entire spin configuration {o;}. Likewise, n, ¢ and n denote the corresponding
collections of variables.

In this section we work entirely in the lattice-gas variables, both for the original Hamil-
tonian and the renormalized Hamiltonian. We write the renormalized Hamiltonian as

A@@) =Y c(V)i(Y) @

Y
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where the sum is over all finite subsets including the empty set, and
a(y) =
ieY

Consider the block-variable configuration of all 0’s. Our method for computing the renor-
malized Hamiltonian uses only block-variable configurations which differ from this config-
uration at a finite number of sites. For a finite subset X, let 7% denote the block-variable
configuration with all block variables in X equal to 1 and the rest equal to 0. Then (2) says

exp(—H@@") =Y T@*,n)e” "™

Note that 7”(X) = 0 except when X = . So H@) = c@). In particular, c¢(@) will grow
as the size of the finite volume. The other coefficients ¢(Y) should have finite limits in the
infinite-volume limit. We define f(X) by

f(X)=H@") - H@")

Then f(X) should have a finite limit in the infinite-volume limit, and it should be related to
the infinite-volume c¢(X) by

fXO= Y ) Q)

Y:9#YCX

The system of (5) can be explicitly solved for the c(Y). We claim that the solution for
X#£Ris

cX)= Y (=D Mr) (6)

Y:0£YCX

This is a standard inversion trick. To verify (6), define ¢(X) by (6). Then for a given X # @,

Yo=Y > )"z

Y:@#YCX YP#YCX ZW#ZCY

= Y f@ ) (pr @)

ZW+ZCX Y:ZcycXx

The sum over Y is 1 if X = Z. If Z is a proper subset of X, we claim this sum is 0. To see
this:

Y. M= W= TTa+1)=0

Y:ZcYcX W:WCX\Z ieX\Z

Thus (7) collapses to f(X).

The important feature of (6) is that the coefficient ¢(X) only depends on a finite number
of free energies f(Y), specifically those with Y C X. As we will see, these free energies can
be computed extremely accurately. So individual coefficients ¢(X) in the lattice-gas vari-
ables can be computed extremely accurately. Moreover, this computation does not depend
on how many terms we decide to keep in the renormalized Hamiltonian. If we increase the
number of terms we keep, then the coefficients we have already computed will not change.
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We have carried out numerical calculations of a large number of the coefficients in the
lattice-gas representation for the critical nearest neighbor Ising model on the square lattice
with the majority rule renormalization group map with two by two blocks. We need a crite-
rion for deciding for which ¥ we will compute c¢(Y). We assume the coefficients will decay
as the number of sites in Y grows and as the distance between these sites grows. So we need
a measure of the size of a set Y. There is no canonical way to define this size. We use the
following ad hoc quantity. If ¥ = {yy, y», ..., y,}, then we define

Sy =) _"llyi —cl3 ®)
i=1

where c is the center of mass:

1 n
C=;§y1‘

and || || is the usual Euclidean distance in the plane. Note that we do not take a square
root in (8).

We claim that if X’ C X then S(X’) < S(X). To prove this it suffices to prove the case
that X’ has one less site than X. Let X be x, x2,...,x, and X' be x1, x2, ..., x,_1. Let ¢ be
the center of mass of X and ¢’ the center of mass of X’. So

n—1

S(X)=>"llxi—clI3

i=1

The center of mass has the property that it minimizes the above sum. So

n—1 n
S(X) <Y i —cll3 <) llxi —cll3 = S(X)

i=1 i=1

We fix a cutoff C > 0, and compute c(Y) for all ¥ with S(Y) < C. We only need to
compute it for one Y from each translation class, and so there are a finite number of such
Y’s. The bulk of the computation is computing the free energies f(X) for X with S(X) <C.
Using (6) to find the ¢(Y) requires comparatively little computation. The property that X’ C
X = S(X’) < S(X), implies that the collection of X for which we must compute f(X) is
just the collection of X with S(X) <C.

To study how fast the coefficients c(Y) decay, we take one coefficient from each trans-
lation class that we have computed and order them so that |c(Y)| is decreasing, i.e.,
lc(Y,)| = |c(Yus1)|. We then plot |c(Y,)| as a function of n. This is the bottom curve in
Fig. 2. Note that the vertical axis uses a logarithmic scale. The second quantity plotted (the
top curve in the figure) is

N
> e

as a function of n, where N is the total number of Y for which we compute the coefficients.
The two lines shown are given by 27"/ for two different values of c. The two curves in
the figure depend on the function S(Y) we use to measure the size of sets and the cutoff we
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Fig. 2 The coefficients c(Y) 10

are ordered so |c(Y},)| decreases.

The bottom curve is |c(Yy)]| vs. 1 1
n, and the fop curve is the tail

N el vs.n 0.1 ]

0.01

0.001

0.0001

1e-05

1e-06

0 2000 4000 6000 8000 10000
n

use for this function. However, whatever function and cutoff we use, the resulting curve will
be a lower bound on the curve that would result from computing all the coefficients c¢(Y). In
particular, we can make the following observations. The lower curve crosses the horizontal
lines at 1072, 1073 and 10™* at 131,1223 and 4023, respectively. Hence there are at least
131 translation classes with a coefficient bigger than 1072, at least 1223 with a coefficient
bigger than 1073, and at least 4023 with a coefficient bigger than 107*,

In the preceding discussion we used one coefficient from each translation class. In addi-
tion to the translation symmetry the model is also symmetric under rotations by 90 degrees
and relections in lattice axes. More precisely, the additional symmetry is the dihedral group
of order 8. We have repeated the previous study of the decay of the coefficients taking into
account the dihedral group symmetry as well as the translational symmetry by taking only
one term from the above list from each dihedral group symmetry class. The main effect is
that the scale on the horizontal axis is reduced by a factor of 8. This is not surprising since
for most subsets, rotations and reflections will generate eight different subsets.

From a mathematical perspective, one would like to show that the renormalized Hamil-
tonian exists in some Banach space. One choice of norm for the Banach space would be

> le)]

Y:0eY

One would like to approximate the Hamiltonian by a Hamiltonian with a finite number of
terms. So it is important to see how fast the above sum converges as we include more terms
in the Hamiltonian. This is similar to the second plot in Fig. 2. Note that in this norm each
translation class appears |Y| times. So the second plot in Fig. 2 is in some sense a lower
bound on the decay for the Hamiltonian. Another choice of the norm would be

D le)ler”

Y:0eY

for some measure ©(Y) > 0 of the size of Y. For this norm the convergence would be even
slower than that seen in the figure.

It is worth noting that norms defined using the lattice-gas representation of the Hamil-
tonian are in general stronger than norms that use the spin variable representation [4]. For
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example, if we can write the Hamiltonian in the lattice-gas representation (4) with

> le¥)] < o0

Ys0

then it is straightforward to show that the Hamiltonian can be represented in the spin variable
representation (9) with

> ld(¥)| < oo

Y>0

4 Renormalized Hamiltonian in the Spin Variables

In the previous section we saw that in the lattice-gas variables there is a natural way to
compute the coefficients ¢(Y) in the expansion (4) for H. In this section we consider the
renormalized Hamiltonian in the spin variables:

H@E)=) d(¥)5(Y) ©)
Y

with 6 (Y) =[],y 6;. The sum over Y is over all finite subsets.
We can use n; = (1 — 0;)/2 to express the spin coefficients d(Y) in (9) in terms of the
lattice-gas coefficients ¢(Y) in (4).

H@G) = Zc(X)ﬁ(X) = ZC(X)Q*'X' ]_[(1 -3
X X ieX
=ZC(X)2*‘X‘ Z (=5 ()

X

Yy:ycx

=2 6MEDHM Y e
Y

X:ycx

= Zd(Y)c‘r(Y)
Y

where the spin coefficients d(Y) are given by

dy)= (D" Z c(X)2~ I (10)

X:YcX

The problem is that to compute the spin coefficient d(Y) we need the lattice-gas coefficients
¢(X) for infinitely many X, and so we need the free energies f(X) for infinitely many X’s.
So we must introduce some sort of approximation.

Let Y, be a collection of finite subsets of the renormalized lattice such that one set from
each translation class is contained in Y.,. We can rewrite (9) as

HG)= ) d¥)) 5 +1)

YeYoo

where the sum over ¢ is over the translations for the renormalized lattice. Here Y + ¢ denotes
(i+t:ieY).
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Now let Y be a finite subcollection of Y,,. We want to compute an approximation to the
above of the form

HGE)~Y d(Y)) (Y +1)

YeY t

We will consider two methods which we will refer to as the “partially exact” method and
the “uniformly close” method. B
For the partially exact method, we begin by noting that we can write H (1) as

H@@)= ) (V)Y Y +1)

YeYoo

The approximation is simply to truncate this sum by restricting Y to those in Y:

H@i)~ Y ()Y iY +1)

YeY

The c(Y) are exact. As we saw in the last section we can compute them from (6) by comput-
ing the free energies f(X) for X € Y. We then convert this Hamiltonian to the spin variables
with no approximation. The result is that the approximation to H (o) is

Zd(Y)Z&(Y—H) (11

YeY t

with

dyy=(=D" Y ex)27 (12)

X:YCX,X+teY

where the notation X + ¢ € Y means some translation of X (possibly X itself) is in Y. Thus
this method is equivalent to truncating the exact formula (10) by restricting the sum over X
to sets in Y and their translates. In the lattice-gas variables our approximation to H agrees
with the true H for all n* such that X € Y. The change from lattice gas to spin variables
did not involve any approximation, so our approximation to H in the spin variables agrees
exactly with the true H for all configurations ¥ for ¥ € Y. This is the reason for calling
this method “partially exact.” It is exact for some of the block-spin configurations.

For the uniformly close method let X be another finite collection of finite subsets which
contains at most one set from each translation class. We compute the free energies f(X) for
X €X, i.e., we compute H(6%). We define the error of a set of coefficients {d(Y):Y eY}
to be

ﬁ(&x)—Zd(Y)Z&X(Y-i—t)

YeY t

max
XeX

where 6% is the spin configuration which is —1 on X and 41 on all other sites. We then
choose the coefficients d(Y) to minimize the above error. This is a standard linear program-
ming problem which we solve by the simplex algorithm. We call this the uniformly close
approximation since we have a uniform bound on the difference between our approximation
and the exact H for the block-spin configurations 5% for X € X. (For other X we cannot
say anything about how well the approximation does.) If X =Y, then the partially exact
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Fig. 3 The dependence of the 0.366 , ,
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approximation makes the above error zero. We only use the uniformly close approximation
for X which are larger than Y.

We take the following point of view. We think of Y as being fixed. It determines a finite-
dimensional space of Hamiltonians that we use to approximate the renormalized Hamil-
tonian. We then think of the collection X as being variable. A larger X means we “know”
more free energies and so have more information to use in computing the approximation. In
our studies we will take the collection Y to be all the subsets ¥ with s(Y) < Cp for some
cutoff Cj, and X to be all the X with s(X) < C for some cutoff Cy > Cp

When we worked in the lattice-gas variables the computation of the coefficients c(X) was
unambiguous. The computation of the values of H (i1) requires some approximations, but as
we will see in Sect. 5 these approximation are well behaved and introduce small errors. The
computation of the ¢(X) from the H (77) does not require any approximation or truncation.
In the spin variable representation we now have multiple ways to compute the coefficients
d(X) depending on whether we use the partially exact or uniformly close methods and on the
choices of X and Y. We restrict our study of the spin variable coefficients to studying how
these choices affect the values of individual coefficients. We focus our attention on three
particular coefficients: the nearest neighbor, the next nearest neighbor and the plaquette.
These refer to the coefficients of o;0; with |i — j| =1, of o;0; with |i — j| = V2, and of
o;o;j0x0; wWhere i, j, k, [ are the corners of a unit square. As in the previous section, our
numerical calculations are for the critical nearest neighbor Ising model on the square lattice
with the majority rule renormalization group map with two by two blocks.

For the partially exact method we have one parameter—the cutoffs C; and C are equal
and correspond to the cutoff C of Sect. 3. So we can plot individual coefficients as a function
of Cy. For the uniformly close method we have two parameters: the cutoff C; determines
the finite-dimensional subspace used to approximate the renormalized Hamiltonian and the
cutoff C; determines the number of H (i1) values we use. We plot the coefficients in this case
as a function of C for several different choices of Cg. The results are shown in Figs. 3, 4,
and 5. The variations seen in the three coefficients are roughly comparable in size. Note that
while the ranges of the vertical axes vary in the three figure, the scales for the vertical axes
are all the same. The variations in the coefficients are on the order of several thousandths.
So even for these relatively large coefficients, it is difficult to determine the value of the
coefficient to better than a few percent. For smaller coefficients the variations are somewhat
smaller, but as a fraction of the coefficient they are typically larger.
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Fig. 4 The next nearest neighbor
coefficient in the spin variable
representation of the
renormalized Hamiltonian

Fig. 5 The plaquette coefficient
in the spin variable representation
of the renormalized Hamiltonian
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These three coefficients (along with many others) have of course been computed before.
Two early references are [3, 15]. The point of our study is not the values of these coefficients
but rather the variation in their values as one varies the method used to compute them.

5 Computing the Free Energy

Fix a block-spin configuration 5. We want to compute the free energy H (&) of the con-

strained partition function

exp(—H () = > T(G,0)e

Initially we work with the spin variables, but later in this section we will switch to the
lattice-gas variables. We only need to do this computation for configurations ¢ which are
+1 except on a finite set. Even when the original system is at the critical point, these con-
strained systems have relatively short correlation lengths. This is where the real power of
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Fig. 6 (Color online) We o o o o o o o o o o
compute H (5) by summing out ° ° ° ° °
the original spins one block at a
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the renormalization group becomes apparent. In particular, finite-volume effects in the above
computation decay very quickly as the volume increases.

Before we explain our method for the computation, we first indicate how H (&) can be
computed by a Monte Carlo calculation. (We have done such a simulation as a check on
the method we describe later.) Fix a relatively small set of block spins, X. Let V be a finite
volume of block spins containing X which is large enough that the boundary of V is far
from X. We include only the factors in the renormalization group kernel corresponding to
the blocks in V' \ B. For these blocks we take the block spins to be +1. We then run a Monte
Carlo simulation of the Ising system with this kernel outside of X. When we sample the
simulation we compute the block-spin configuration on X. This allows us to compute the
relative weights of the possible block-spin configurations on X. From these weights we can
then compute the H (&) for & which are —1 only on a subset of X.

We now turn to our method for computing H (5). It does not involve Monte Carlo meth-
ods, and it is much more accurate than the Monte Carlo approach described in the previous
paragraph. Everything in the following depends on o, but we will not make this dependence
explicit. Imagine that we have summed over the spins one block at a time in such a way
that we have reached the state in Fig. 6. Open circles indicate sites in the original lattice
for which we have already summed over the spin, and blue (gray) circles represent sites for
which we have not. (Red (solid) circles indicate the block spins which are fixed throughout
this computation.) The result of this partial computation of the free energy is a function of
the spins in the original lattice with shaded circles. In fact, it only depends on those that are
nearest neighbors of a spin with an open circle. We will refer to these spins as boundary
spins. The quantity we have computed so far is positive, and we write it in the form

exp(Za(X)a(X) + AH) [[@.0)
X B’

where X is summed over finite subsets of the boundary spins. A H denotes the terms in the
Hamiltonian that only involve spins with shaded circles. (These terms have not yet entered
the computation.) The product over B’ is over the blocks containing shaded circles, and
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tp'(0,0) is the factor in the renormalization group kernel for block B’. The next step is to
sum over the four spins in the block B and take the logarithm of the result:

In [Z exp (Za(X)o(X) + AH) [[w@. a)]
X B’

OB

The sum over op denotes a sum over the spins o; with i € B. Terms a(X)o (X) for which
X N B = pass through this computation trivially. So do the terms in AH which do not
involve a spin in the block B and the factors ¢z for B’ # B. So the computation that we
must actually do is

ln[Zexp< Z a(X)o(X)+ h>13(6, 0)]

op X:XNB#Y
where / contains the terms in H that only depend on spins with shaded circles and depend
on at least one spin in B.

To do this computation numerically, we must introduce a truncation. We fix a finite subset
D of the boundary sites centered near B. We then restrict the sum over X to X C D. We
need to write the result of the truncated computation in the form

ln[Zexp( > a(X)a(X)—i—h)tB(&,a)]=Za’(Y)0(Y)
op Y

X:XNB##,XCD

The left side only depends on spins in D’ = D \ B, so the sum on the right may be restricted
to Y C D'. If we define F (o) to be the left side of this equation, then the coefficients are
given by

a(¥)=2"""1%"F(o)
O'D/

The amount of computation required grows quite rapidly as D grows for three reasons.
First, the number of X with X C D grows as 2!P!. Second, the sum over o in the above
also grows as 2!P!. Third, the number of Y also grows as 2/P!. We have found that a(X)
decays quickly as the number of sites in X grows. So we can make a further truncation by
only keeping terms a(X) with | X| less than some specified cutoff. (] X| denotes the number
of sites in X.) This greatly reduces the growth of the computation with D from the first and
third effects. But we are still left with the second effect.

We can eliminate the second effect by working in the lattice-gas variables. We replace
> ya(X)o(X) by D b(X)n(X). Define

F(n) = ln[Z exp( > bOnX) + h)tg (7, n)] (13)

ng X:XNB#),XCD

We need to compute the coefficients in

F(n)=)_b'(X)n(X)
X

As we saw in Sect. 3, they are given by

PXy= ) (DX MFE@Y (14)

Yi£YCX
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Fig.7 L is a measure of the size ~ 1e-05
of the finite volume. The quantity
plotted is the average change in
f(X) when L is decreased by 1. 1e-07
(See (16))

1e-06

1e-08

1e-09

1e-10

1e-11

1e-12

1e-13

1e-14

1e-15

where n¥ is the configuration that is 1 on Y and 0 off of it. So to compute b'(X) we only
need to compute F(n¥) for Y C X.

In this approach using the lattice-gas variables we can forget about the set D entirely.
Instead we specify a finite collection B of subsets of the boundary spins with the property
that they intersect B. We then make the approximation

Yo bXnx)x Y b(X)n(X) (15)

X:XNB#Y XeB:XNB#Y

We use (14) to compute b'(X). It will be nonzero only for X C D'. Before we sum over the
next block of spins, we need to truncate ), b’ (X)n(X). We keep only the terms such that
X isin B 4t where ¢ is the translation that takes the block we just summed over to the block
we are summing over next, and B + ¢ denotes the collection of sets of the form X + ¢ for
X e B.

We take the finite collection B to be all X which intersect B and satisfy S(X) < Cp
where S(X) is some size function and Cp is some cutoff. We use the size function given
by (8) that we used for choosing the block-spin sets. In our calculations we take Cp = 260
which leads to 10,763 sets in the collection B. We discuss the effect of Cp on the error in
the following section.

The above discussion took place in an infinite volume. The region shown in Fig. 6 is a
finite piece of the infinite volume. In practice we can only sum over the spins in a finite
number of blocks. The block-spin configuration 7 is of the form iz¥ for a finite set Y. We
carry out the computation in a finite volume which is chosen so that the distance from Y
to the boundary of the finite volume is sufficiently large. We will study how large the finite
volume should be in the next section.

6 Errors

In this section we study the sources of error in our computations of the f(X). There are
two: the use of a finite volume to compute infinite-volume quantities and the truncation
determined by the cutoff Cp in Sect. 5.

We choose the finite volume in which we carry out our calculation as follows. The block-
spin configurations 71 that we consider are of the form 7! for finite sets Y. We take these
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Fig. 8 We plot the average of 1e-05 - -
f(X) = f(X), as defined by errorin f(X)  +
(17), and of ¢(X) — &(X), as X erorineX)
defined by (18), as a function of
the cutoff Cp *
1e-06 F . i
X +
X
% +
1e-07 | E
+
X +
x
X
1e-08

140 160 160 c_ 200 220 240 260

sets Y to be centered near the origin and take the finite volume to be a square centered
at the origin. The square contains the blocks with centers at (2i,2j) with —L <i <L,
—L < j < L. So the infinite-volume limit is obtained by taking L — oo.

To study the finite-volume error in our calculation we do the following. The free energy
f(Y) depends on L, so we denote it by f7(Y). As a measure of the finite-volume error we
use

1
= 2 L) = fra )] (16)
Y

where the sum is over one element of each translation class with s(Y) < 210, and N is the
number of terms in the sum. In this study of the finite-volume error we take Cp = 30. This
is much smaller than the cutoff we used for the main calculations, but the behavior of the
finite-volume error with L is the same whether we look at this smaller set of coefficients or
the larger set.

This average difference as a function of L is shown in Fig. 7. The vertical scale is loga-
rithmic, so the approximately linear dependence seen for the smaller values of L indicates
exponential decay of this difference with L. The line shown in the figure is of the form
cet/92 Keeping in mind that L corresponds to numbers of blocks and the blocks are 2
by 2, the decay length of 0.2 corresponds to a decay length of 0.4 in units of lattice spac-
ings. This very short decay length is a result of the block spin being +1 at all but a finite
number of block sites. Beginning with L around 10 the difference is dominated by numer-
ical errors. In our simulations we are very conservative and take L = 15. With this choice
the finite-volume error is at the same level as the numerical error.

The translational symmetry of the original model implies that f(X) is unchanged if we
translate X. So we only need to compute f(X) for one element of each translation class.
The model is also invariant under the dihedral group symmetry generated by rotations by
multiples of 7 /2 and reflections in the coordinate axes. However, our method of computing
f(X) breaks the dihedral symmetry of the lattice, so our values of f(X) for X’s from the
same dihedral class are not exactly the same. The dihedral symmetry is only restored when
we let L — oo and Cp — oo. We have already seen that we can take L sufficiently large
that the finite-volume error is reduced to the order of the numerical error. So we can use the
breaking of the dihedral symmetry to study how the error depends on the cutoff Cp.
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Fig. 9 The convergence of four T T T T T )+
. e +
different quantities as Cp — oo. y symmetrized f(X) x
From top to bottom the four + c(X) x
quantities are given by (19) X symmetrized c¢(X) ©
1e-06 | E
to (22) x
o
n
*
o X
*
1e-07 F o % i
o
X +
o X
1e-08 | o
o
140 160 T80 s 200 250 240

For various choices of Cp we compute f(X) for the same collection of X as in our main
calculation. Let f(X) be the average of f(Y) over one Y from each translation class which
is related to X by the dihedral symmetry. (The number of terms involved in this average
ranges from 1 to 8.) The differences f(X) — f(X) are a measure of the amount of breaking
of the dihedral symmetry and hence of the error in the computation from the cutoff Cz. We

use the average
1 -
N;vm—f(m (17

to quantify the error. As before the sum is over one element of each translation class with
s(Y) <210, and N is the number of terms in the sum. This quantity is plotted in Fig. 8 as a
function of Cp for the free energies f(Y). It is the higher set of points. For the coefficients
in the lattice-gas variables we define c(X) analogously, and study the average

1
5 2 le) =) (18)
Y

This quantity is the lower set of points in Fig. 8.
We also study the convergence as Cg — oo in another way. Let f°°(Y) denote f(Y) for
the largest value of Cp which we use, i.e., 260. We then consider

1
5 2@ = =) (19)
Y
This is plotted as a function of Cp in Fig. 9 for the free energy f(Y). We also plot
1 _ _
5 2@ = =) (20)
Y

As the figure shows, averaging over the dihedral group like this reduces the error somewhat.
The figure also includes the analogous plots for the coefficients in the lattice-gas represen-
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tation, i.e., of the quantities
1
5 2 le) = X)) 1)
Y

and

1
I D ley) — e () (22)
Y

7 Conclusions

We have shown that if we use lattice-gas variables, then the computation of the coefficients in
the renormalized Hamiltonian only depends on a finite number of values of the renormalized
Hamiltonian. So this computation does not depend on how we approximate the inherently
infinite-dimensional renormalized Hamiltonian by a finite-dimensional approximation. We
have also given a highly accurate method for computing the values of the renormalized
Hamiltonian which takes advantage of the finite correlation length that results from the
introduction of the renormalization group transformation.

The renormalized Hamiltonian has infinitely many different terms but the conventional
wisdom is that it may be well approximated by a finite number of terms. In particular, the
magnitude of the coefficients should decay as the “size” of the set of lattice sites increases.
We studied this for the nearest neighbor critical Ising model on the square lattice under
one step of the majority rule renormalization group transformation. We computed a large
number of coefficients in the lattice-gas variables, ordered them by decreasing magnitude
and plotted them. We found that over several orders of magnitude the coefficients decayed
exponentially with the number of terms, but the decay rate was slow. It takes about 850
additional terms to see the magnitude reduced by just a factor of 1/2.

If we use the usual spin variables, there is no natural way to compute the coefficients of
the renormalized Hamiltonian. We considered two methods of truncation. If we look at an
individual coefficient, we see significant dependence on the method used and on the value
of the cutoffs used to specify the truncations in these methods. Even with our computation
of approximately 10,000 values of the renormalized Hamiltonian, the uncertainty in the spin
variable coefficients due to the different truncation methods is on the order of a percent for
the largest coefficients and even larger as a percentage for some of the smaller coefficients.

One might hope to prove theorems about these real-space renormalization group trans-
formations by defining a suitable Banach space of Hamiltonians and then doing a computer
aided proof to show the transformation is defined in some open subset of the Banach space
and there is a fixed point in this subset. Proving there is a fixed point would require con-
structing an approximation to the fixed point with a finite number of terms. Our numerical
results suggest that at best such an approach will require a huge number of terms in the finite
approximation and at worst the number of terms needed will doom the approach to failure.

Past numerical studies of the two dimensional Ising model using the renormalization
group have produced fairly accurate values of the critical exponents using a relatively modest
number of terms in the renormalized Hamiltonian. These studies use the spin variables, so
their accuracy is surprising given the difficulty we have found in computing the coefficients
in the renormalized Hamiltonian accurately. An interesting question is to understand this.
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DMS-0758649.
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